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   Geometrical structures of some non-distance models for asymmetric MDS are examined in 

error-free data measured at a ratio level and a unified geometrical interpretation of these models 
is provided. These include CASK (Canonical Analysis of SKew symmetry), DEDICOM, 

GIPSCAL, and HCM (Hermitian Canonical Model). It is shown that these models except for 

CASK as well as other possible models for square asymmetric proximity data matrix are 

expressible in terms of finite-dimensional complex Hilbert space under some general condition, 
and that differences in form of these models depend only on the bases chosen. It is also shown 

that the Hilbert space structure has an interesting property which traditional distance model 

does not. Finally it is shown that the general condition relates to an extension of the famous 

Young-Householder theorem to complex Hilbert space.
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1. Introduction 

   In recent years much attention has been attracted to non-distance models for asym

metric MDS. These include CASK (Canonical Analysis of SKew symmetry) proposed by 

Gower (1977) and Constantine and Gower (1978), DEDICOM (DEcomposition into DIrec

tional COMponents) by Harshman (1978) and Harshman, Green, Wind, and Lundy (1982), 

GIPSCAL (Generalized Inner Product multidimensional SCALing) by Chino (1978, 1980, 

1990), HCM (Hermitian Canonical Model) proposed originally by Escoufier and Grorud 

(1980), and reformulated independently in a different way and amplified somewhat by Chino 

(1991a, 1991b). 
   Unfortunately however, the geometrical structures of these models have been only 

partially understood. For example, Harshman (1978) calls DEDICOM a non-spatial 
model. Chino (1990) does not show the necessary and sufficient condition for GIPSCAL to 

be a Euclidean space model. Recently, Kiers and Takane (1992) have proposed a general

ized version of GIPSCAL and have shown the necessary and sufficient condition for 

DEDICOM and GIPSCAL to have an equivalent expression. But, their discussions are 

limited to pointing out that these two models can have such an expression. On the other 

hand, Chino (1991b) has pointed out that HCM can have some metric properties such as a 

finite-dimentional complex (f.d.c.) Hilbert space structure under a general condition, but his 

discussion still lacks a unified geometrical interpretation of these four models. Gower and 

Zielman (1992) have discussed the non-Euclidean space properties of the symmetric part as



well as the skew-symmetric part of a proximity matrix. But they neither discuss the 

concrete space structures of each of them nor refer to the structures as a whole. 

   In this paper we examine the geometrical structures of these models for asymmetric 

MDS in error-free data measured at a ratio level using several concepts which are little 

known to psychometricians, and provide a unified geometrical interpretation of their 

holistic structures. As a result we relate these models to each other. Results are sum

marized into the following five conclusions, which are proved in section 2, where the 

terminology is fully explained : 

   (CI) Complex counterparts of DEDICOM, GIPSCAL, and HCM all assign a Her
mitian form to the Hermitian data matrix H constructed uniquely from an original 

proximity matrix S such that

H=SS+iSSk, (1)

where SS and Ssk are the symmetric part and the skew-symmetric part of the proximity 

data matrix, respectively. Incidentally, these models can be generally called the Her

mitian form models. 

   (C2) The complex counterparts of DEDICOM, GIPSCAL, HCM, and other possible 
models for H are expressible in terms of finite-dimensional complex Hilbert space if H is 

positive (negative) semi-definite. Moreover, in this case, objects can be represented in the 
space. 

   (C3) The complex counterparts of DEDICOM, GIPSCAL, HCM, and other possible 
models of H are expressible in terms of an indefinite metric if H is indefinite. 

   (C4) The Hermitian form in DEDICOM, GIPSCAL, and HCM is composed of a 
metric tensor and an exterior product called the 2-form, which correspond to the symmet

ric part and the skew-symmetric part of S, respectively. Differences in form of these 

models depend upon the basis chosen for these two parts. On the one hand, GIPSCAL 

employs an orthogonal basis for both, while HCM chooses an orthonormal basis for the 

former and a symplectic basis for the latter. Thus, GIPSCAL and HCM have a standard 

Euclidean structure if H is positive (negative) semi-definite. On the other hand, 

DEDICOM does not choose a specific standard basis. CASK uses a symplectic basis, but 

does not assume any metric tensor. 

   (C5) We can also choose, for example, a symplectic basis for DEDICOM and 
GIPSCAL. In this case, the metric tensor is furnished with a weighted Euclidean space 

structure for DEDICOM and GIPSCAL. The generalized version of GIPSCAL as well as 

a DEDICOM version proposed recently by Kiers and Takane (1992) are such cases. 

   These conclusions are proved in the next section. In the third section we shall also 

prove that, under the general condition stated in C2, the Hermitian form models have an 
interesting property, which traditional (squared) distance model does not. In the fourth 

section we shall prove that the general condition leads to an extension of the famous 

Young-Householder theorem (Young & Householder, 1938) to complex Hilbert space.

2. Proofs of the five conclusions 

   Let us now prove seriatim the five conclusions stated in the introduction section.



First, we define the complex counterparts of DEDICOM and GIPSCAL. These definitions 
can be made simply by putting the purely imaginary number i to the second right-hand 

terms of the following equations for DEDICOM and GIPSCAL : 

                  S={s;k}= YAY1= YASYt+ YASkY1, (2) 

and 

                     S=aZZ1+bZL,Zt+c1N1N, (3) 

where S is a proximity matrix of order (N X N), AS and Ask are the symmetric part and 
the skew-symmetric part of the DEDICOM "core" matrix A of order (p x p) giving the 

directional relationships among the basic p types or dimensions, and L, is the special 
skew-symmetric matrix of order (q x q) in the GIPSCAL model. Note that the constant 

c in Eq. (3) is zero, since we have assumed that the data is measured at a ratio level in this 

paper. In terms of Eq. (1), Eq. (2) becomes 

                    H={h;k}=YASY1+iYAskYt, (4) 

and Eq. (3) becomes 

                      H=aZZt+i(bZLgZt). (5) 

From Eqs. (4) and (5), we get 

                       h;k=y;ASyk+i y;Askyk, (6) 

and 

                       h;k=az;zk+i(bz;L9zk), (7) 

respectively. 
   As for HCM, there exists an orthonormal eigenbasis {u,, u2, , UN} in CN, which is 

composed of the eigenvectors of H, since the starting matrix H of HCM is Hermitian 

(Lancaster & Tismenetsky, 1985). Thus we have 

                           Hug=Aiui, (8) 

Here, we have without loss of generality, A i $0 (1<_i<--n), and An+1-An+2=•••_AN=O. If 

we let 

                             U-{ul, •••, un, un+1, •••, UN}-(U1, U2), 

                      n N-n 

then Eq. (8) can also be written as 

                   HU=(Ul, U2) A' 00 =UA, 
where A=diag(A1, A2, •••, An). Then we have 

                          H = ULA Ul, (9) 

since U is unitary. Note that Eq. (9) holds not only for HCM but also for DEDICOM as 

well as GIPSCAL, since the left-hand sides of Eqs. (4) and (5) are both Hermitian. 

   Moreover, if we put



                       U,=Ur+ZUc, X=(Ur, Uc), (10) 

then we get 

                      H=XQSXt+i XSlskXt, (11) 

where

   _A, 0 0, -A S2
S 0

, A, Qsk=A, 0
(12)

and Ur and Uc are the real part and the imaginary part of U1, respectively. 

   From Eq. (11) we have 

                          hjk-xjQSxk+Z X'WSkxk. (13) 

Then, conclusion Cl is evident. For, putting 9(~, r)= ~Ar*, 9 satisfies the following, 

properties of the Hermitian form (Cristescu, 1977 ; Lancaster and Tismenetsky, 19815): 

                    (i) 9 (~1+~z, r)=co('1, r)+co( '2, r), 

                   (ii) c'(a~, r)=ac( ', r), 
                  (iii) cp(', r)=9(r, ~), 

where r, ~ are row vectors in an n-dimensional complex vector space, and 9(r, ~) is the 

complex conjugate of cp(r, ~ ). Moreover, from Eq. (9) we get h;k = co (v;, V k ), where v;, 

Vk are the row vectors corresponding to the j-th row and the k-th row of U,. Here, it 
should be emphasized that Eq. (9) holds not only for DEDICOM, GIPSCAL, and HCM but 

also for other possible models for H. 
   In general, a Hermitian form is said to be positive-definite if 9(~, ~)>>-0 for any ~, and 

is called a (Hermitian) scalar product if 9 (~, ~) > 0 for any ~ * 0. This means that we can 

define a seminorm on a vector space if, for example, ~o(~, ')>0 for any ~ in such a way 
that 

                   

II III= (14) 

In particular, if 9 is positive for any * 0, II II defines a norm. Since a normed vector 

space is a pre-Hilbert space if and only if the norm is generated by a scalar product, 
DEDICOM, GIPSCAL, HCM, and other possible models for H are expressible in terms of 

pre-Hilbert space. Furthermore, these models can be stated in terms of fd.c. Hilbert 
space, since a finite-dimensional complex space is always complete. Of course, the positive 

semi-difiniteness of H is a necessary and sufficient condition for these models to be 
expressible in terms of complex Hilbert space. The proof of conclusion C2 is straight

forward for HCM. It should be understood that the sign of H is altered when H is 
negative semi-difinite. Such an H corresponds to some dissimilarity data matrix. The 

proof is trivial for DEDICOM, GIPSCAL, and other possible models for H, since the 
decomposition defined by Eq. (1) is unique. Recently, Kiers and Takane (1992) have proved 

that a necessary and sufficient condition for these two models to have an equivalent 
expression is the positive-definiteness of AS is Eq. (4). This is different from the condition 
for these two models to be expressible in terms of ff d. c. Hilbert space. Conclusion C3 is 

trivial, at this point, since 9(~, ~) is not necessarily positive (or negative) if H is indefinite.



   We shall now examine the features of the Hermitian form used in DEDICOM, 

GIPSCAL, and HCM. It is apparent, from Eqs. (6), (7), and (13), that all of these models 

assume a symmetric bilinear form and a skew-symmetric bilinear form for the symmetric 

and the skew-symmetric parts of the proximity data, respectively. In the mathematical 

literatures these are also called the metric tensor and the exterior product or the 2-form. 

   The metric tensor is a (0) tensor at a point in a vector space, and thus a bilinear 
function of two vectors. Generally, a tensor of type p

qat a point in a vector space (more 

generally at a point of a manifold) is defined to be a real-valued multilinear function which 
takes as arguments p one-forms and q vectors (Schutz, 1980). Here, a one-form is defined 

as a linear, real-valued function of vectors. Following Schutz, the metric tensor, G is 

defined by 

                      G(a, .8) = G(f, a)-atj9, (15) 

where a and 8 are two vectors in an 1-dimensional vector space. Moreover, let us define 

matrix M of order (I x 1) whose (j, k) entry is 

                        m;k=G(b;, bk)=b;bk, (16) 

where b; (j = 1, 2, , 1) constitute a basis of the vector space. The nonsingular symmetric 

matrix M can be diagonalized by using its eigenvalues and eigenvectors. If M is an 

identity matrix, the metric tensor is usually called the Euclidean metric, and the vector 

space is called the Euclidean space. More generally, the metric tensor is called a Eu

clidean metric if M is positive-definite or nagative-definite. Otherwise, it is called 

indefinite. A famous indefinite metric is a Minkowski metric in relativity theory in physics, 

where one eigenvalue is negative, and the others are all positive. 

   It is apparent that CASK has no metric tensor, since CASK can, be written as 

                        SSk=XFYt=XFKXt, (17) 

where r is a diagonal matrix of order (N X N) of form 

                       F=diag (Yi, Yi, 72, 72, '•', (0)), (18) 

and X is an orthogonal matrix of order (N X N). Moreover, K is the matrix of order 

(N x N) which is defined by

    0 1 
      -1 0 

K= 

            0 1 
                 -1 0 

                (1)

(19)

The second component of the Hermitian form used in DEDICOM, GIPSCAL, and HCM, is 

a certain 2-form. In general, an exterior form of degree k, or a k-form, is a function w,



of k vectors in an n-dimensional real vector space Rn, which has the following properties : 

   (1) k-linear, i.e., 

       w(A1$1+A2$1, $2, ..., $k)=A1w($1, $2, Ek)+A2W(E1, $2, ..., ak), (20) 

   (2) antisymmetric, i.e., 

   w(eii, $i2, ..., E61)=(-1)"w($1, $2, •••, $k), (21) 

where

      if the permutation (i 1, i2, _••, i k) is even, 
v 1

, if the permutation (ii, i2, • • •, i k) is odd.

   A well-known k-form is the oriented volume of the parallelepiped with edges $1, $2, 

  $k in an oriented Euclidean space Ek. Likewise, a famous 2-form is the oriented area 
of the parallelogram spanned by two vectors $, and $2 of the oriented Euclidean space E2. 

   A 2-form can be written as a linear combination of the exterior products of two 1

forms. It should be noted that the value of the exterior product w1/ \w2 of two 1-forms w, 

and (02 on the pair of vectors $,, $2ERn can be thought of as a projection of the oriented 

area spanned by the two vectors in an n-dimensional real vector space onto the two

dimensional w,, w2-plane (Arnold, 1978). Figure 2.1 illustrates this idea. In this figure, 

w(E,) and W(62) are the two-dimensional images of $1 and ~2 in the n-dimensional vector 

space.

Fig. 2.1 cul n cue as the image of the parallelogram

   It is apparent, from Eqs. (6), (7), (13), that y;ASkyk , z;LQzk, and x;Qskxk are all 2
forms and thus they can be a projection of the oriented area spanned by the two vectors in 

an n-dimensional real vector space onto a two-dimensional plane. Then, it will be natural 

to ask what are the differences of form among these three models. The answer is that the 

variety of form depends upon what kind of framework we intend to choose to look at the 

projection of the oriented area, i.e. the exterior product w,Aw2. Mathematically, this is 
equivalent to saying what kind of basis we intend to choose. There are at least three 

strategies to do so. One is to choose an orthonormal basis on Rn and project the exterior



product onto 2 component planes. GIPSCAL employs this strategy. Another is to take 
a symplectic basis on R2n, and CASK and HCM use this strategy. A third is not to take 

a specific standard basis, and this is the strategy of DEDICOM. 

   The details of the first strategy can be explained as follows : In this case, we first 

consider q independent 1-forms xl, x2, •••, xq, which are called the basic forms. The 2

forms x1Ax; constructed from these basic forms have a very simple geometrical meaning 

(Arnold, 1978) : the value of x1Ax; is the oriented area of the image of the parallelogram 
spanned by the two vectors $, and $2 on the coordinate plane xi, x; under the projection 

parallel to the remaining coordinate functions. 

   It is interesting to note that (a) (q) (=q(q-1)/2) 2-forms, xi/fix;, are linearly indepen
dent, and (b) every 2-form on the q-dimensional space with coordinate xl, .... xq can be 

uniquely represented in the form 

q 

                         w2= Z ai; (xiAx;), (22)                                               i<; 

where 

                             a;;=we(ei, e;), (23) 

and ez is the i-th basis vector (Arnold, 1978). The wb is the 2-form on the pair et, e;. It 
is evident that the skew-symmetric part of GIPSCAL, i.e. z;L qzk, is nothing but the 2

form w2 in Eq. (22) in the special case when the q basis vectors e,, e2, , eq are orthonor
mal. 

   The second strategy is to employ a symplectic basis. According to Arnold (1978) : 
   A symplectic (linear) structure on R2n is defined as a nondegenerate bilinear skew

symmetric 2-form given in R2n. This form is called the skew-scalar product and is 

denoted by [7g,, r7z] _  [992, V,]. The space R2n, together with the symplectic structure 

[ , ], is called a symplectic vector space. Here, a 2-form [ , ] on R2n is called 
nondegenerate if, for any r7,, [r7,, 772]=0 then r7i=o. 

   In general a skew-scalar product, [771, V2] _ (02(771, 772) may take a variety of forms 

depending on a basis in a symplectic vector space. However, if we take a suitable basis, 
it is represented by a very simple form 

                             w2=xl/ vy1+•••+xnAyn, (24) 

where (x,, •••, xn, yl, •••, yn) be coordinate functions on R2n and this symplectic structure is 
called the standard symplectic structure. It is apparent, from the form of w2 is Eq. (24), that 

in this case 2 n basis vectors ex, and ey, (i=1, --•, n) satisfy the relations 

                  [ex,, ex,]_ [ey,, ey;]_ [ext, ey,]=0, (it]'), (25) 

and 

                                 [ex,•, ey;]=1. (26) 

The basis vectors which satisfy Eqs. (25) and (26) constitute a standard symplectic basis. 

   It is apparent from the definition that in the standard symplectic structure the oriented



area cwt spanned by the two vectors 72, and 72, is projected on the n coordinate planes (xi, 

yi ), i =1, • • • , n. As a result, the w2 is equal to the sum of the oriented areas of the 

parallelogram on the n coordinate planes. 
   It is apparent from the above discussion that CASK employs the standard symplectic 

basis and that matrix K in Eq. (19) is nothing but the expression of Eqs. (25) and (26) if the 

order of F defined by Eq. (18) is even. 

   The geometry of a symplectic space is different from that of a Euclidean space and it 

is evident that the symplectic structure itself has no Euclidean metric structure. However, 

we can, of course, impose some Euclidean structure on the symplectic space as follows 

(Arnold, 1978) : 

n 

                        xtx= (xz+yz ), (27) 
                                                                        z=~ 

where 

n 

                              x=
Z-1(xiex;+yiey,). (28) 

This is equivalent to introduce a complex space Cn and define the Hermitian scalar product 

                         rl~7)2+i[71, 772], (29) 

in the space (Arnold, 1978). It is easy to see that the Hermitian scalar product defined by 
Eq. (13) is equivalent to that defined here by Eq. (29), if H is positive (negative) semi

definite. These examinations lead to conclusion C4. 
   Conclusion C4 suggests that DEDICOM, GIPSCAL, and HCM can take alternative 

forms depending upon the basis chosen. In fact, we can also choose, for example, a 
symplectic basis for DEDICOM and GIPSCAL. Let us first rewrite Eq. (4), defining an 

orthogonal transformation 0 such that 

                            OASOt=DS, (30) 

and 

                           Y=PO, (31) 

as 

                      H=PDSPt+i POASkOtPt. (32) 

If DS is positive definite, Eq. (32) becomes 

        H=(PDSZ)PDSZ)t+i(PDSZ)DS ZOASkOIDS Z)(PDSZ)t. (33) 

Then, as Kiers and Takane (1992) have done, we can decompose the "core" matrix via a 
singular value decomposition into 

                  DS ~OASkOtDs =TIKTt=TJTt, (34) 

where T is an orthogonal matrix of order (p x p). Then, Eq. (33) becomes 

                       H=QQt+iQJQt, (35)



where 

                         Q=PDS+T. (36) 

It should be noted that if H is negative semi-definite we may merely change the sign of H . 
To prove conclusion C5, we must further administer a coordinate transformation to Q in 

Eq. (35). Letting 

                               R=QI-~'F, (37) 

and noticing the relation in Eq. (34), 

                          EK=I-YKIi=J, (38) 

we get 

                      H=RE` Rt+i RKRt. (39) 

This proves conclusion C5 for DEDICOM. The same is true for GIPSCAL. 

3. An interesting property of f.d.c. Hilbert space models 

   Unlike the distance model, the Hermitian scalar product model has an interesting 

property in that the similarity between the pair of objects located far from the centroid of 
objects, say, the origin, is greater than that located near the origin, even if their distances 

are the same. In other words, if this model holds, then subjects are likely to underestimate 
the distance between the pairs of objects located far from the origin and overestimate the 

distance between the pairs located near the origin. 
   To prove it, we shall first point out that for a complex pre-Hilbert space (thus, also for 

the f.d.c. Hilbert space), the polar identity

     4 (II ~+r IIZ  II ~-r 112)+ 4 i(II ~+ir II2 II'-ir II2), 
    = I (II X112+11 r112-II -x112)+ 2 i(II X112+11 r112-II -ir112),

(40)

holds (Cristescu, 1977), where rp (~, r) is a Hermitian form. Then, remembering that hi" 
= p(v; , Vk ), which we have proved in the second section in leading to conclusion C1, we 
get

h,k= 1      (II v, 112+ II Vk112 II Vi Vk 112) 

    + 2 i(II v; 112+ Ilvk 112 II Vi -ZVk 112).
(41)

Then, in terms of Eq. (1), we get

S;k= 2 (II v; 112+ II Vk 1(2 II Vi Vk 112) 

   + 2 (11 v; 112+ 11 Vk 112 11 Vi -lVk 112),
(42)

Rearranging the right-hand side of Eq. (42), we have



sjk= 2 {II vj-Vk 112+ 11 Vi -iVk I12}+(11 vj 112+ 11 vk I12). (43)

Notice here that in general 11 v;  iVk 112 is not equal toll Vk iv; 112. 

   Equation (43) represents the property under study, if we assume that the centroid of 
coordinates of objects is at or near the origin. For in this case the second term on the 

right-hand side of Eq. (43) increases as the objects j and k are away from the origin. 
   For a real Hilbert space (i.e., a Euclidean space), it is well-known that,

S;k 2 11 v;-Vk 112+ 2 (11 vj 112+ 11 vk 112). (44)

It is apparent, from Eq. (44), that the same discussion as in the above asymmetric matrix 

holds for the symmetric proximity matrix.

4. Generalization of the Young-Householder theorem 

   Conclusion C2 in the second section motivates the following theorem. This theorem 

is an extension of the Young-Householder theorem into f.d.c. Hilbert space. 

THEOREM Let v;(1< i< N) be the row vector of order n, which corresponds to the j th 

row of U, in Eq. (9). Put

d;k= ll Vi  vk ll, 1<<j, k<-N, (45) 

  djo=ll vi 11, f<--j<N, (46)

and 

                      d;k= ll Vi -ZVk k< _N. (47) 

Then the following equalities hold ;

d;k=dk;, 1<-j, k<-N, d;;=0, 1<--j<-N, (48)

djo+dko-d;k=-(dko+d;o-dk;), 1<_ j, k<<-N, (49)

h;k= 2 (d;o+dko-d;k)+ 2 i(d;o+dko-d;k), k<--N. (50)
Here h;k is given by Eqs. (6), (7), or (13) and the matrix H= {hjk}, (15 j, k<--N) is a 
positive semi-definite Hermitian matrix. 

   Conversely, if we are given positive real numbers djk (1 < j * k < N) satisfying Eqs. (48) 

and (49) for a suitable choice of non-negative real numbers dJk and d;o(1 < j, k< N ), then 
the set {djk } gives the mutual distances of a real (true) set of points in an ff d. c. Hilbert space 

if and only if H is positive semi-definite. The set of points is unique apart from an 
arbitrary unitary transformation. 

   PROOF We can prove the theorem in a similar manner to that given by Young and 
Householder (1938). The only difference is that in this case we must use Eq. (50), which is 

another expression of Eq. (41), instead of Eq. (1) of Young and Householder (1938). 
Equation (49) is merely a condition for hk; = hjk, h;k being the complex conjugate of hjk . 

   The proof of the latter part of the theorem can be stated in another way. Let us first 
note that Eqs. (48), (49), and (50) hold for the mutual distance of a true set of points in an



f.d.c. Hilbert space. Second, if H is positive semi-difinite, we can define the following 

distances using the row vectors v;, vk corresponding to the j-th row and the k-th row of 

U, in Eq. (9): 

                      d;k=ll v';-vkjj, 1<-j, k<-N, (51) 

                 d;,= ~~ v 1<-j<-N, (52) 

and 

                     d;k ~~ v,-ivk 1<--j, ksN. (53) 

Then, from the result of the first part of the theorem we have 

                d;k=dk,, 1<<-j, k<-N, d;;=0, 1<j:< N, (54) 

            djo+dko-d;k=-(dko+d;o-dk;), 1<-j, k:< N, (55) 

       h;k= 2 (d;o+dko-d;k)+ 2 i(d;o+dko-d;k), 1<<-j, k:< N. (56) 
From Eqs. (49) and (50), we have 

                          hi, =djo, 1N. (57) 

Moreover, from Eqs. (55) and (56) we get 

                        h„=d;o, 1N. (58) 

Then we have djo = d;o, which means that 

                            d;o=d;o, 1<<-j<-N. (59) 

Next, comparing the real parts and the imaginary parts of Eqs. (50) and (56), we get 

               djo+dko-djk=d;o+dko-d;k, 1<<-j, k<-N, (60) 

               djo+dko-djk=d;o+dko-d;k, 1<--j, k<<-N. (61) 

Equations (59) and (60) yield djk=d; k, from which we get 

                               d;k= d;k. (62) 

Likewise, from Eqs. (59) and (61) we get 

                           d;k= djk (63) 

The invariance of the coordinates of points over a unitary transformation is evident. •

5. Discussion 

   Throughout this paper we have exclusively dealt with the error-free data, i. e. the 

error-free proximity matrices S as well as the corresponding Hermitian matrices H 

measured at a ratio level. However, in a practical situation, both of these matrices may 

be fallible and not necessarily be measured at the ratio level. Furthermore, we can neither 

observe nor estimate the special distances defined by Eq. (47), since it is not concerned with 

the direct distance between two points in an f.d.c. Hilbert space in marked contrast to the 

distance in classical MDS. In such a case we must estimate them from the data. If the



proximity judgments are measured at the ratio level, there are no missing observations, 
and the matrix H is positive semi-definite, we can use HCM as one such method. For in 

such a case HCM is also solved by a singular value decomposition and thus has a least 

squares (LS) property according to the Schmidt-Mirsky theorem, which is a generalization 

of the famous Eckart-Young theorem (Stewart & Sun, 1990, p. 205). Otherwise, we must 

estimate them using some scaling procedure. GIPSCAL and its generalized version 

proposed recently by Kiers and Takane (1992) are thought of as two such procedures, which 
indirectly estimate these h;k's by LS criteria. Recently, Chino (1992) has proposed an ML 

procedure for estimating and testing parameters of a general Hermitian form model, 
including all these discussed in this paper, given proximity or dissimilarity data measured 

at least at an ordinal level. The Hermitian form model discussed in this paper may also 

be applicable to square contingency tables, as Chino (1991b) has pointed out.
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